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Summary: Multi-view data have been routinely collected in various fields of science and engineering. A general

problem is to study the predictive association between multivariate responses and multi-view predictor sets, all of

which can be of high dimensionality. It is likely that only a few views are relevant to prediction, and the predictors

within each relevant view contribute to the prediction collectively rather than sparsely. We cast this new problem

under the familiar multivariate regression framework and propose an integrative reduced-rank regression (iRRR),

where each view has its own low-rank coefficient matrix. As such, latent features are extracted from each view in

a supervised fashion. For model estimation, we develop a convex composite nuclear norm penalization approach,

which admits an efficient algorithm via alternating direction method of multipliers. Extensions to non-Gaussian and

incomplete data are discussed. Theoretically, we derive non-asymptotic oracle bounds of iRRR under a restricted

eigenvalue condition. Our results recover oracle bounds of several special cases of iRRR including Lasso, group Lasso

and nuclear norm penalized regression. Therefore, iRRR seamlessly bridges group-sparse and low-rank methods and

can achieve substantially faster convergence rate under realistic settings of multi-view learning. Simulation studies

and an application in the Longitudinal Studies of Aging further showcase the efficacy of the proposed methods.
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1. Introduction6

Multi-view data, or measurements of several distinct yet interrelated sets of characteristics7

pertaining to the same set of subjects, have become increasingly common in various fields.8

In a human lung study, for example, segmental airway tree measurements from CT-scanned9

images, patient behavioral data from questionnaires, gene expressions data, together with10

multiple pulmonary function test results from spirometry, were all collected. Unveiling lung11

disease mechanisms then amounts to linking the microscopic lung airway structures, the12

genetic information, and the patient behaviors to the global measurements of lung functions13

(Chen et al., 2016). In an Internet network analysis, the popularity and influence of a web14

page are related to its layouts, images, texts, and hyperlinks as well as by the content of15

other web pages that link back to it. In Longitudinal Study of Aging (LSOA) (Stanziano16

et al., 2010), the interest is to predict current health conditions of patients using histori-17

cal information of their living conditions, household structures, habits, activities, medical18

conditions, among others. The availability of such multi-view data has made tackling many19

fundamental problems possible through an integrative statistical learning paradigm, whose20

success owes to the utilization of information from various lenses and angles simultaneously.21

The aforementioned problems can all be cast under a multivariate regression framework,

in which both the responses and the predictors can be high dimensional, and in addition, the

predictors admit some natural grouping structure. In this paper we investigate this simple

yet general framework for achieving integrative learning. To formulate, suppose we observe

Xk ∈ Rn×pk for k = 1, . . . , K, each consisting of n copies of independent observations from

a set of predictor/feature variables of dimension pk, and also we observe data on q response

variables Y ∈ Rn×q. Let X = (X1, . . . ,XK) ∈ Rn×p be the design matrix collecting all the

predictor sets/groups, with p =
∑K

k=1 pk. Both p and q can be much larger than the sample
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size n. Consider the multivariate linear regression model,

Y = XB0 + E =
K∑
k=1

XkB0k + E, (1)

where B0 = (BT
01, . . . ,B

T
0K)T ∈ Rp×q is the unknown regression coefficient matrix partitioned22

corresponding to the predictor groups, and E contains independent random errors with zero23

mean. For simplicity, we assume both the responses and the predictors are centered so there24

is no intercept term. The naive least squares estimation fails miserably in high dimensions25

as it leverages neither the response associations nor the grouping of the predictors.26

In recent years, we have witnessed an exciting development in regularized estimation, which27

aims to recover certain parsimonious low dimensional signal from noisy high dimensional28

data. In the context of multivariate regression or multi-task learning (Caruana, 1997), many29

exploit the idea of sparse estimation (Rothman et al., 2010; Peng et al., 2010; Lee and Liu,30

2012; Li et al., 2015), in which information sharing can be achieved by assuming that all31

the responses are impacted by the same small subset of predictors. When the predictors32

themselves exhibit a group structure as in model (1), a group penalization approach, for33

example, the convex group Lasso (grLasso) method (Yuan and Lin, 2006), can be readily34

applied to promote groupwise predictor selection. Such methods have shown to be effective35

in integrative analysis of high-throughput genomic studies (Ma et al., 2011; Liu et al., 2014);36

a comprehensive review of these methods is provided by Huang et al. (2012).37

For multivariate learning, another class of methods, i.e., the reduced-rank methods (An-

derson, 1951; Reinsel and Velu, 1998), has also been attractive, where a low-rank constraint

on the parameter matrix directly translates to an interpretable latent factor formulation, and

conveniently induces information sharing among the regression tasks. Bunea et al. (2011) cast

the high-dimensional reduced-rank regression (RRR) as a non-convex penalized regression

problem with a rank penalty. Its convex counterpart is the nuclear norm penalized regression
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(NNP) (Yuan et al., 2007; Negahban and Wainwright, 2011; Koltchinskii et al., 2011),

min
B∈Rp×q

1

2n
‖Y −XB‖2F + λ‖B‖?, (2)

where ‖ · ‖F denotes the Frobenius norm, and the nuclear norm is defined as ‖B‖? =38 ∑p∧q
j=1 σ(B, j), with σ(·, j) denoting the jth largest singular value of the enclosed matrix.39

Other forms of singular value penalization were considered in, e.g., Mukherjee and Zhu40

(2011), Chen et al. (2013) and Zhou and Li (2014). In addition, some recent efforts further41

improve low-rank methods by incorporating error covariance modeling, such as envelope42

models (Cook et al., 2015), or by utilizing variable selection (Chen et al., 2012; Bunea et al.,43

2012; Chen and Huang, 2012; Su et al., 2016).44

In essence, to best predict the multivariate response, sparse methods search for the most45

relevant subset or groups of predictors, while reduced-rank methods search for the most46

relevant subspace of the predictors. However, neither class of existing methods can fulfill the47

needs in the aforementioned multi-view problems. The predictors within each group/view48

may be strongly correlated, each individual variable may only have weak predictive power,49

and it is likely that only a few of the views are useful for prediction. Indeed, in the lung50

study, it is largely the collective effort of the sets of local airway features that drives the global51

lung functions (Chen et al., 2016). In the LSOA study, the predictor groups have distinct52

interpretations and thus warrant distinct dependence structures with the health outcomes.53

In this paper, we propose an integrative multi-view reduced-rank regression (iRRR) model,54

where the integration is in terms of multi-view predictors. To be specific, under model (1),55

we assume each set of predictors has its own low-rank coefficient matrix. Figure 1 shows56

a conceptual diagram of our proposed method. Latent features or relevant subspaces are57

extracted from each predictor set Xk under the supervision of the multivariate response Y,58

and the sets of latent variables/subspaces in turn jointly predict Y. The model setting strikes59

a balance between flexibility and parsimony, as it nicely bridges two seemingly quite different60
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model classes: reduced-rank and group-sparse models. On the one hand, iRRR generalizes the61

two-set regressor model studied in Velu (1991) by allowing multiple sets of predictors, each of62

which can correspond to a low-rank coefficient matrix. On the other hand, iRRR subsumes63

group-sparse model setup by allowing the rank of B0k being 0, for any k = 1, . . . , K, i.e., the64

coefficient matrix of a predictor group could be entirely zero.65

[Figure 1 about here.]66

In Section 2, we develop a new convex optimization approach via composite nuclear norm67

penalization (cNNP) to conduct model estimation for iRRR, which ensures the scalability to68

large-scale applications. We devise an Alternating Direction Method of Multipliers (ADMM)69

algorithm to solve the optimization problem with convergence guarantee; extensions to non-70

Gaussian response, incomplete data, among others, are also considered, and all the details are71

reported in the Web Appendix A. In Section 3, we derive non-asymptotic oracle bounds for72

the iRRR estimator, which subsume the results for several existing regularized estimation73

methods, and show that our proposed approach can achieve superior performance under74

realistic settings of multi-view learning. Comprehensive simulation studies are contained in75

Section 4, and a real data analysis of the LSOA example is contained in Section 5. In Section76

6, we conclude with some discussions.77

2. Integrative Multi-View Reduced-Rank Regression78

2.1 Proposed Model79

We consider the multivariate regression model in (1) to pursue integrative learning. Recall80

that in model (1), there are K views or groups of predictors denoted by X = (X1, . . . ,XK),81

where Xk ∈ Rn×pk and
∑K

k=1 pk = p. Correspondingly, the coefficient matrix B0 is partitioned82

into K parts as B0 = (BT
01, . . . ,B

T
0K)T, where B0k ∈ Rpk×q. Denote r(·) as the rank of the83

enclosed matrix. By assuming each B0k is possibly of low rank or even a zero matrix, i.e.,84
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0 6 r0k � pk ∧ q where r0k = r(B0k), for k = 1, . . . , K, we reach our proposed integrative85

multi-view reduced-rank regression (iRRR) model.86

The groupwise low-rank structure in iRRR is distinct from a globally low-rank structure87

for B0 in standard RRR models. The low-rankness of B0ks does not necessarily imply that88

B0 is of low rank. Conversely, if B0 is of low rank, i.e., r0 = r(B0) � p ∧ q, all we know is89

that the rank of each B0k is upper bounded by r0.90

Nevertheless, we can first attempt an intuitive understanding of the potential parsimony91

of iRRR in multi-view settings. The numbers of free parameters in B0 (the naive degrees of92

freedom) for an iRRR model, a globally reduced-rank model and a group-sparse model are93

df1 =
∑K

k=1(pk + q− r0k)r0k, df2 = (p+ q− r0)r0 and df3 =
∑K

k=1 pkqI(r0k 6= 0), respectively,94

where I(·) is an indicator function. For high-dimensional multi-view data, consider the95

scenario that only a few views/predictor groups impact the prediction in a collective way,96

i.e., r0ks are mostly zero, and each nonzero r0k could be much smaller than (pk∧q). Then df197

could be substantially smaller than both df2 and df3. For example, if r01 > 0 while r0k = 0 for98

any k > 1 (i.e., r0 = r01), we have df1 = (p1 +q−r01)r01, df2 = (p+q−r01)r01 and df3 = p1q,99

respectively. Another example is when r0 =
∑K

k=1 r0k, e.g., B0ks in model (1) have distinct100

row spaces. Since
∑K

k=1(pk + q− r0k)r0k 6 {q+
∑K

k=1(pk− r0k)}{
∑K

k=1 r0k} = (p+ q− r0)r0,101

iRRR is more parsimonious than the globally reduced-rank model. The above observations102

will be rigorously justified in Section 3 through a non-asymptotic analysis.103

2.2 Composite Nuclear Norm Penalization104

To recover the desired view-specific low-rank structure in the iRRR model, we propose a

convex optimization approach with composite nuclear norm penalization (cNNP),

B̂ ∈ arg min
B∈Rp×q

1

2n
‖Y−XB‖2F + λ

K∑
k=1

wk‖Bk‖?, (3)

where ‖Bk‖? =
∑pk∧q

j=1 σ(Bk, j) is the nuclear norm of Bk, wks are some prespecified weights,

and λ is a tuning parameter controlling the amount of regularization. The use of the weights
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is to adjust for the dimension and scale differences of Xks. We choose

wk = σ(Xk, 1){√q +
√
r(Xk)}/n, (4)

based on a concentration inequality of the largest singular value of a Gaussian matrix. This105

choice balances the penalization of different views and allows us to use only a single tuning106

parameter to achieve desired statistical performance; see Section 3 for details.107

Through cNNP, the proposed approach can achieve view selection and view-specific sub-108

space selection simultaneously, which shares the same spirit as the bi-level selection methods109

for univariate regression (Breheny and Huang, 2009; Huang et al., 2012; Chen et al., 2016).110

Moreover, iRRR seamlessly bridges group-sparse and low-rank methods as its special cases.111

Case 1: nuclear norm penalized regression (NNP). When p1 = p and K = 1, (3) reduces to112

the NNP method as in (2), which learns a globally low-rank association structure.113

Case 2: multi-task learning (MTL). When pk = 1 and p = K, (3) becomes a special case of114

MTL (Caruana, 1997), in which all the tasks are with the same set of features and the same115

set of samples. MTL achieves integrative learning by exploiting potential information sharing116

across the tasks, i.e., all the task models share the same sparsity pattern of the features.117

Case 3: Lasso and grLasso. When q = 1, (3) becomes a grLasso method, as ‖Bk‖? = ‖Bk‖2118

when Bk ∈ Rpk . Further, when pk = 1 and p = K, (3) reduces to a Lasso regression.119

Different loss functions can be adopted in (3) to handle various statistical learning prob-120

lems. In particular, multivariate dichotomous outcomes are frequently encountered in prac-121

tice. For example, in the LSOA example, the health outcomes are responses to a collection122

of dichotomous questions. More generally, we extend iRRR to non-Gaussian responses by123

exploiting the generalized linear model (GLM) setup. Let Y = (yij) ∈ Rn×q be the response124

matrix consisting of n independent samples from q response variables. We assume each yij125

follows a distribution in the exponential family with probability density f(yij; θij, φj) =126

exp{(yijθij − b(θij))/(a(φj)) + c(yij;φj)}, where θijs are the natural parameters which collec-127
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tively form Θ = (θij) ∈ Rn×q, φj is the dispersion parameter of the jth response, and a(·),128

b(·), c(·) are known functions determined by the response distribution. To streamline the idea,129

we focus on the natural exponential family distributions for which the dispersion parameter130

φj is known. For example, φj = 1 for Bernoulli or Poisson distributions. Without loss of131

generality, the canonical link g = (b′)−1 is applied, so that E(yij) = b′(θij) = g−1(θij), where132

b′ is the derivative of b. The iRRR model can then be expressed as Θ = 1µT
0 +

∑K
k=1 XkB0k,133

where µ0 is an intercept vector, B0ks are possibly of low rank, and the remaining terms are134

the same as in model (1). An estimation criterion can then be formed by replacing the first135

term in (3) by the negative log-likelihood function.136

The convex optimization of (3) has no closed-form solution in general, for which we137

propose an ADMM algorithm (Boyd et al., 2011). Due to space limit, all the details are138

presented in Web Appendix A; there we also provide details on handling incomplete data139

and binary responses as an example of the GLM setup, and on further extensions including140

the incorporation of `2 regularization and adaptive estimation.141

3. Theoretical Analysis142

We investigate the theoretical properties of the proposed iRRR estimator from solving the143

convex cNNP problem. In particular, we derive its non-asymptotic performance bounds for144

estimation and prediction. Our general results recover performance bounds of several related145

methods, including Lasso, grLasso and NNP. We further show that iRRR is capable of146

substantially outperforming those methods under realistic settings of multi-view learning.147

All the proofs are provided in Web Appendix D.148

We mainly consider the multi-view regression model in (1), i.e., Y =
∑K

k=1 XkB0k + E,

and the iRRR estimator in (3) with the weights defined in (4), i.e.,

B̂ ∈ arg min
B∈Rp×q

1

2n
‖Y−XB‖2F + λ

K∑
k=1

σ(Xk, 1)
{√

q +
√
r(Xk)

}
‖Bk‖?/n.
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Define Z = XTX/n, and Zk = XT
k Xk/n, for k = 1, . . . , K. We scale the columns of X such149

that the diagonal elements of Z all equal to 1. Denote Λ(Z, l) as the lth largest eigenvalue150

of Z, so that Λ(Z, l) = σ(X, l)2/n.151

Theorem 1: Assume E has independent and identically distributed (i.i.d.) N(0, τ 2) en-

tries. Let λ = (1+θ)τ , with θ > 0 arbitrary. Then with probability at least 1−
∑K

k=1 exp[−θ2{q+

r(Xk)}/2], we have

‖XB̂−XB0‖2F 6 ‖XC−XB0‖2F + 4λ
K∑
k=1

σ(Xk, 1)
{√

q +
√
r(Xk)

}
‖Ck‖?,

for any Ck ∈ Rpk×q, k = 1, . . . , K and C = (CT
1 , . . . ,C

T
K)T.152

Theorem 1 shows that B̂ balances the bias term ‖XC − XB0‖2F and the variance term153

4λ
∑K

k=1 σ(Xk, 1){√q +
√
r(Xk)}‖Ck‖?. An oracle inequality for B̂ is then readily obtained154

for the low-dimensional scenario σ(X, p) > 0; see the corollary in Web Appendix D.155

We now investigate the general high-dimensional scenario. Motivated by Lounici et al.

(2011), Negahban and Wainwright (2011), Koltchinskii et al. (2011), among others, we impose

a restricted eigenvalue condition (RE). We say that X satisfies RE condition over a restricted

set C(r1, . . . , rK ; δ) ⊂ Rp×q if there exists some constant κ(X) > 0 such that

1

2n
‖X∆‖2F > κ(X)‖∆‖2F, for all ∆ ∈ C(r1, . . . , rK ; δ).

Here each rk is an integer satisfying 1 6 rk 6 min(pk, q) and δ is a tolerance parameter. The156

technical details on the construction of the restricted set is provided in Web Appendix B.157

Theorem 2: Assume that E has i.i.d. N(0, τ 2) entries. Suppose X satisfies the RE

condition with parameter κ(X) > 0 over the set C(r1, . . . , rK ; δ). Let λ = 2(1 + θ)τ with

θ > 0 arbitrary. Then with probability at least 1−
∑K

k=1 exp[−θ2{q + r(Xk)}/2],

‖B̂−B0‖2F � max

{
δ2, τ 2(1 + θ)2

K∑
k=1

Λ(Zk, 1)

κ(X)2
{√q +

√
r(Xk)}2rk
n

,

τ(1 + θ)
K∑
k=1

√
Λ(Zk, 1)

κ(X)

{√q +
√
r(Xk)}{

∑mk

j=rk+1 σ(B0k, j)}√
n

}
.
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On the right hand side of the above upper bound, the first term is from the toler-158

ance parameter in the RE condition, which ensures that the condition can possibly hold159

when the true model is not exactly low-rank (Negahban and Wainwright, 2011), i.e., when160 ∑mk

j=rk+1 σ(B0k, j) 6= 0. The second term gives the estimation error of recovering the desired161

view-specific low-rank structure, and the third term gives the approximation error incurred162

due to approximating the true model with the view-specific low-rank structure. When the163

true model is exactly of low rank, i.e., r(B0k) = r0k, it suffices to take δ = 0 and the164

upper bound then yields the estimation error, i.e., τ 2
∑K

k=1{q+r(Xk)}r0k/n. This rate holds165

with high probability in the high-dimensional setting that q + r(Xk) → ∞. In the classical166

setting of n → ∞ with fixed q and r(Xk), by choosing θ ∝
√

log n, the rate becomes167

τ 2 log(n)
∑K

k=1 r0k/n with probability approaching 1.168

Intriguingly, the results in Theorem 2 can specialize into oracle inequalities of several169

existing regularized estimation methods, such as NNP, MTL and Lasso. This is because these170

models can all be viewed as special cases of iRRR. As such, iRRR seamlessly bridges group-171

sparse and low-rank methods and provides a unified theory of the two types of regularization.172

Several examples are provided in Web Appendix C.173

To see the potential advantage of iRRR over NNP or MTL, we make some comparisons174

of their error rates based on Theorem 2. To convey the main message, consider the case175

where pk = p1, r(Xk) = rX1 for k = 1, . . . , K, r0k = r01 for k = 1, . . . , s, and r0k = 0 for176

k = s + 1, . . . , K. The error rate is τ 2sr01(q + rX1)/n, τ 2r0(q + rX)/n, for iRRR and NNP,177

respectively, with high probability. As long as sr01 = O(r0), iRRR achieves a faster rate since178

rX1 6 rX always holds. For comparing iRRR and MTL, we get that with probability 1−p−1,179

iRRR achieves an error rate τ 2(log p + q + rX1)sr01/n (by choosing θ =
√

4 log p/(q + rX1)180

) while MTL achieves τ 2(log p + q + 1)sp1/n. The two rates agree with each other in the181
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MTL setting when rX1 = r01 = p1 = 1, and the former rate can be much faster in the iRRR182

setting when, for example, r01 � p1 and rX1 = O(log(p) + q).183

4. Simulation184

4.1 Settings and Evaluation Metrics185

We conduct simulation studies to demonstrate the efficacy of the proposed iRRR method.186

We consider two response types: Gaussian and binary. In Gaussian settings, we compare187

iRRR with the ordinary least squares (OLS), the ridge RRR (RRRR) (Mukherjee and Zhu,188

2011) (which contains RRR as a special case), and the adaptive NNP (aNNP) (which has189

been shown to be computationally efficient and can outperform NNP in Chen et al., 2013).190

For the settings in which the true coefficient matrix is sparse, we also include MTL (Caruana,191

1997) (by treating each predictor as a group in iRRR), as well as Lasso (Tibshirani, 1996)192

and grLasso (Yuan and Lin, 2006) for each response variable separately (grLasso accounts193

for the grouping information in the multi-view predictors). In binary settings, we compare194

iRRR with the generalized RRR (gRRR) (She, 2013; Luo et al., 2018) and the univariate195

penalized logistic regression (glmnet) with the elastic net penalty (Zou and Hastie, 2005).196

For the Gaussian models, we consider a range of simulation settings. Setting 1 is the basic197

setting, where n = 500, K = 2, p1 = p2 = 50 (p = 100), and q = 100. We generate the198

rows of the design matrix X independently from a p-variate Gaussian distribution N(0,Σx)199

with Σx = Ip, followed by column centering. The error matrix E is filled with i.i.d. standard200

Gaussian random numbers. (We also consider correlated errors. The results are similar and201

contained in Web Appendix E.) Each coefficient matrix B0k has rank r0k = 10, which is202

generated as B0k = LkR
T
k with the entries of Lk ∈ Rpk×r0k and Rk ∈ Rq×r0k both generated203

from N(0, 1). Consequently, B0 = (BT
01,B

T
02)

T has rank r0 = r01 + r02 = 20. The response204

matrix Y is then generated based on the model in (1). As such, there are more than 10,000205
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unknown parameters in this model, posing a challenging large-scale problem. Furthermore,206

we also consider incomplete responses, with 10%, 20%, 30% entries missing completely at207

random.208

The other settings are variants of Setting 1:209

• Setting 2 (multi-collinear): The predictors in the two views X1 and X2 are highly210

correlated. All the p = p1 + p2 predictors are generated jointly from a p-variate Gaussian211

distribution Np(0,Σx), where Σx has diagonal elements 1 and off-diagonal 0.9.212

• Setting 3 (globally low-rank): We set R1 = R2 when generating B01 and B02, so213

that the low rank structures in separate coefficient matrices also imply a globally low-rank214

structure. We consider three scenarios: r0 = r01 = r02 = 20, r0 = r01 = r02 = 40, and215

r0 = 60, r01 = r02 = 50.216

• Setting 4 (multi-set): We consider multiple views, K ∈ {3, 4, 5}. The additional design217

matrices and coefficient matrices are generated in the same way as in Setting 1.218

• Setting 5 (sparse-view): We consider K = 3, where the last predictor set X3 is generated219

in the same way as in Setting 1 but is irrelevant to prediction, i.e., B03 = 0.220

For the binary models, we consider two settings: the basic setting (Setting 6) and the221

sparse-view setting (Setting 7), which are similar to Setting 1 and Setting 5, respectively.222

The differences are that the sample size is set to n = 200, the intercept µ0 is set as a vector223

of random numbers from the uniform distribution on [−1, 1], and the entries of Y are drawn224

from Bernoulli distributions with their natural parameters given by Θ = 1µT
0 +
∑K

k=1 XkB0k.225

In Settings 1–5, we use the MSPE to evaluate the performance of different methods,

MSPE(B0, B̂) = tr
{

(B0 − B̂)TΣx(B0 − B̂)
}
,

where tr(·) represents the trace of a matrix, B̂ is the estimate of B0, and Σx is the covariance

matrix of X. In Settings 6–7, we evaluate the average cross entropy between the true and
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estimated probabilities on an independently generated validation data set of size n = 500,

En(µ0,B0, µ̂, B̂) = − 1

n

n∑
i=1

q∑
j=1

{pij log p̂ij + (1− pij) log(1− p̂ij)} ,

where pij = exp(θij)/{1 + exp(θij)}, and p̂ij is its corresponding estimate.226

For each simulation setting, we first generate an independent testing data set to select227

tuning parameters for different methods. Once selected, the tuning parameters are fixed228

in subsequent analyses. This unified approach alleviates inaccuracy in the empirical tuning229

parameter selection to ensure a fair comparison of different regularization methods. We have230

also tried 5-fold CV. The results are similar to those from the validation data tuning and231

thus omitted for brevity. In each setting, the experiment is replicated 100 times.232

4.2 Results233

Table 1 reports the results for Settings 1–4. In all the settings, the three regularized estima-234

tion methods always substantially outperform OLS, indicating the strength and necessity of235

dimension reduction. In Setting 1 (basic), iRRR provides the best prediction performance,236

followed by aNNP and RRRR. When the outcomes are incomplete, only iRRR is applicable.237

The mean and standard deviation of MSPE over 100 repetitions are 7.87 (0.20), 8.64 (0.20),238

and 9.96 (0.24), when 10%, 20%, and 30% of the responses are missing, respectively. In239

Setting 2 (multi-collinear), iRRR is still the best. It is worth noting that owing to240

shrinkage estimation, RRRR slightly outperforms aNNP. In Setting 3 (globally low-241

rank), aNNP and RRRR can slightly outperform iRRR when r0 is much smaller than242 ∑K
k=1 r0k. This can be explained by the fact that under this setting iRRR may be less243

parsimonious than the globally reduced-rank methods. To see this, when r0 is small and244

r0 = r01 = r02, we have that
∑K

k=1(pk + q− r0k)r0k = {p+K(q− r0)}r0 > (p+ q− r0)r0, i.e.,245

iRRR yields a larger number of free parameters than RRR. Nevertheless, iRRR regains its246

superiority over the globally low-rank methods when r0 becomes large. We remark that in247

multi-view problems the scenario of r0 �
∑

k r0k rarely happens unless the relevant subspace248
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from each view largely overlaps with each other. In Setting 4 (multi-set), we confirm that249

the advantage of iRRR becomes more obvious as the number of distinct view sets increases.250

[Table 1 about here.]251

Figure 2 displays the results for Setting 5 (sparse-view). We find that the iRRR solution252

tuned based on predictive accuracy usually estimates the third coefficient matrix (which is253

a zero matrix in truth) as a nearly zero matrix and occasionally an exact zero matrix; in254

view of the construction of the cNNN penalty in iRRR, this “over-selection” property is255

analogous to that of Lasso or grLasso. Motivated by Zou (2006), we also experiment with an256

adaptive iRRR (denoted by iRRR-a) approach, where we first fit iRRR and then adjust the257

predefined weights by the inverse of the Frobenius norms of the estimated coefficient matrices.258

As a result, the iRRR-a approach achieves much improved view selection performance and259

even better prediction accuracy than iRRR. In contrast, MTL, Lasso and grLasso have worse260

performance than the low-rank methods, because they fail to leverage information from the261

multivariate response and/or multi-view predictor structures.262

[Figure 2 about here.]263

The simulation results of Settings 6-7 for binary models are displayed in Figure 3.264

The results are similar as in the Gaussian models, i.e., the iRRR methods substantially265

outperform the competing sparse or low-rank methods in prediction.266

[Figure 3 about here.]267

We have also compared the computational time of different methods (on a standard desktop268

with Intel i5 3.3GHz CPU). For example, the average time (in seconds) under Setting 1269

is 0.68 (0.06), 0.07 (0.01) and 0.02 (0.00) for iRRR, aNNP and RRRR, respectively; under270

Setting 4 with K = 5 the average time becomes 0.96 (0.12), 0.09 (0.01) and 0.05 (0.01);271

under Setting 6 with binary responses, the average time is 1.71 (0.03), 0.98 (0.08) and 0.70272
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(0.08) for iRRR, gRRR and glmnet. As expected, iRRR is more computationally expensive273

than the globally low-rank or sparse methods. However, in view of the scale of the problem,274

the computational cost for iRRR is still low and acceptable.275

5. An Application in the Longitudinal Studies of Aging276

The LSOA (Stanziano et al., 2010) was a collaborative effort of the National Center for277

Health Statistics and the National Institute on Aging. The study interviewed a large cohort278

of senior people (70 years of age and over) in 1997-1998 (WAVE II) and 1999-2000 (WAVE279

III), respectively, and measured their health conditions, living conditions, family situations,280

health service utilizations, among others. Here our objective is to examine the predictive281

relationship between health-related events in earlier years and health outcomes in later years,282

which can be formulated as a multivariate regression problem.283

There are n = 3988 common subjects who participated in both WAVE II and WAVE III284

interviews. After data pre-processing (Luo et al., 2018), p = 294 health risk and behavior285

measurements in WAVE II are treated as predictors, and q = 41 health outcomes in WAVE286

III are treated as multivariate responses. The response variables are binary indicators,287

characterizing various cognitive, sensational, social, and life quality outcomes, among others.288

Over 20% of the response data entries are missing. The predictors are multi-view, including289

housing condition (X1 with p1 = 38), family structure/status (X2 with p2 = 60), daily290

activity (X3 with p3 = 40), prior medical condition (X4 with p4 = 114), and medical291

procedure since last interview (X5 with p5 = 40). We thus apply the proposed iRRR method292

to perform the regression analysis. As a comparison, we also implement gRRR (Luo et al.,293

2018), and both classical and sparse logistic regression methods using the R package glmnet,294

denoted as glm and glmnet, respectively.295

We use a random-splitting procedure to evaluate the performance of different methods.

More specifically, each time we randomly select ntr = 3000 subjects as training samples and
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the remaining nte = 988 subjects as testing samples. For each method, we use 5-fold CV on

the training samples to select tuning parameters, and apply the method to all the training

data with the selected tuning parameters to yield its coefficient estimate. The performance

of each method is measured by the average deviance between the observed true response

values and the estimated probabilities, defined as

Average Deviance =
−2
∑nte

i=1

∑q
j=1{yij log p̂ij + (1− yij) log(1− p̂ij)}δij∑nte

i=1

∑q
j=1 δij

,

where δij is an indicator of whether yij is observed. We also calculate the Area Under296

the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve for each outcome297

variable. This procedure is repeated 100 times and the results are averaged.298

In terms of the average deviance, iRRR and glmnet yield very similar results (with mean299

0.77 and standard deviation 0.01), and both substantially outperform gRRR (with mean300

0.83 and standard deviation 0.01) and glm (fails due to a few singular outcomes). The out-301

sample AUCs for different response variables are shown in Figure 4. The response variables302

are sorted based on their missing rates from large (over 70%) to small (about 13%). Again,303

the performance of iRRR is comparable to that of glmnet. The iRRR tends to have a slight304

advantage over glmnet for responses with high missing rates. This could be due to the fact305

that iRRR can borrow information from other responses while the univariate glmnet cannot.306

[Figure 4 about here.]307

To understand the impact of different views on prediction, we produce heatmaps of the308

estimated coefficient matrices in Figure 5 (glm is omitted due to its poor performance). The309

estimates from iRRR and glmnet show quite similar patterns: it appears that the family310

structure/status group and the daily activity group have the most predictive power, and311

the variables within these two groups contribute to the prediction in a collective way. As312

for the other three views, iRRR yields heavily shrunk coefficient estimates, while glmnet313

yields very sparse estimates. These agreements partly explain the similarity of the two314
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methods in their prediction performance. In contrast, the gRRR method tries to learn a315

globally low-rank structure rather than a view-specific structure; consequently, it yields a less316

parsimonious solution with less competitive prediction performance. Therefore, our results317

indicate that generally knowing the family structure/status and daily activity measurements,318

the information on housing condition, prior medical conditions, and medical procedures319

do not provide much new contribution to the prediction of health outcomes on cognition,320

sensation, social behavior, life quality, among others.321

[Figure 5 about here.]322

6. Discussion323

With multi-view predictor/feature sets, it is likely that some of the views are irrelevant to the324

prediction of the outcomes, and the features within a relevant view may be highly correlated325

and hence contribute to the prediction collectively rather than sparsely. When dealing with326

such problem, the two commonly used methodologies, i.e., sparse methods and low-rank327

methods, both have shortcomings. The joint extraction of latent features from each view in328

a supervised fashion offers a better solution; indeed, this is what iRRR strives to achieve.329

There are many directions for future research. For conducting simultaneous view selection330

and within-view subspace selection, the proposed cNNP scheme can be extended to a general331

composite singular value penalization scheme, λ
∑K

k=1wkρO

(∑pk∧q
j=1 ρI (σ(Bk, j))

)
,where ρI332

is an inner penalty function for inducing sparsity among the singular values of each Bk,333

and ρO is an outer penalty function for enforcing sparsity among the Bk matrices. For334

example, the family of bridge penalties (Huang et al., 2008) can be used in both inner and335

outer penalization. Incorporating sparse within-view variable selection to iRRR could also336

be fruitful; one way to achieve this is to use an additive penalty form of cNNP and grLasso.337

Moreover, it is possible to combine iRRR with a covariate-adjusted (inverse) covariance338



Integrative Multi-View Regression 17

estimation method (Rothman et al., 2010), to jointly estimate the mean and covariance339

structures. Another pressing problem is to generalize iRRR to handle heterogeneous data,340

as in practice data may be count-valued, interval-valued, or mixed of several types with341

substantial missing values (Luo et al., 2018). Computationally, the ADMM algorithm can342

be coupled with a Majorization-Minimization algorithm to handle these cases.343

7. Web-based Supplementary Materials344

Web Appendices referenced in Sections 1–4 are available with this article at the Biometrics345

website on Wiley Online Library. The Matlab code for implementing the proposed method346

is available at https://github.com/reagan0323/iRRR.347
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Figure 1: A diagram of integrative multi-view reduced-rank regression (iRRR). Latent
features, i.e., XkUk, are learned from each view/predictor set under the supervision of Y.
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Prediction Results in Setting 5 (sparse-view)

Figure 2: Simulation results for Setting 5 (sparse-view). OLS is omitted as its perfor-
mance is much worse than the reported methods.
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Figure 3: Simulation results for Settings 6–7 with binary response variables.
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Figure 4: LSOA data analysis. The mean and standard deviation (error bar) of AUC for
each response variable over 100 random-splitting procedures. The responses, from left to
right, are ordered by missing rates from large to small.
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Figure 5: LSOA data analysis. The heat maps of the coefficient matrices estimated from
different methods. The predictors fall into 5 groups, namely, housing condition, family status,
daily activity, prior medical condition, and change in medical procedure since last interview,
from top to bottom separated by horizontal black lines. For visualization purpose, we also sort
the responses based on their grouping structure (e.g., cognition, sensation, social behavior,
and life quality).
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Table 1: Simulation results for Settings 1–4. The mean and standard deviation (in
parenthesis) of MSPE over 100 simulation runs are presented. In each setting, the best
results are highlighted in boldface.

iRRR aNNP RRRR OLS

Setting 1 7.22 (0.17) 7.76 (0.22) 8.38 (0.24) 25.15 (0.36)

Setting 2 4.21 (0.10) 4.69 (0.11) 4.52 (0.11) 25.15 (0.36)

(r0 = 20) 10.13 (0.22) 7.81 (0.25) 8.25 (0.26) 25.16 (0.39)
Setting 3 (r0 = 40) 12.48 (0.19) 12.39 (0.22) 13.76 (0.26) 25.04 (0.37)

(r0 = 60) 13.62 (0.21) 14.66 (0.26) 15.66 (0.17) 25.11 (0.39)

(K = 3) 10.19 (0.21) 13.99 (0.32) 15.44 (0.31) 43.76 (0.59)
Setting 4 (K = 4) 13.04 (0.22) 19.99 (0.35) 19.68 (0.19) 68.00 (0.89)

(K = 5) 14.84 (0.25) 24.90 (0.32) 21.43 (0.21) 101.87 (1.38)
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